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Departamento de Fisica Tee6rica, F a d t a d  de Ciencias, Universidad de Salamanca, 37008, 
Salamanca, Spain 

Received 4 August 1993 

Absbnct. In this paper a generalization of the direct method of Clarkson and Kruskal for 
finding similarity reductions of partial diaerential equations is found and discussed for 
the Burgers and BurgersHuxley equations. The generalization incorporates the singular 
manifold method largely based upon the Painlev6 property. This singular manifold can be 
used as a reduced variable. Furthermore, a sort of inverse procedure is hereby developed 
through which we find the equations that yield the vector field components associated to 
the symmetries of the PDE. This procedure also displays the profound relationship among 
the symmetries and the singular manifold as a reduced variable. The symmetries found in 
this way are shown to be those corresponding to the so-called non-classical symmetries by 
Bluman and Cole, and Olver and Rosenau. 

1. Introduction 

In the wiggly road towards a complete elucidation of the meaning of the word inte- 
grabiliiy, the study and understanding of the similarity reductions (SR) of a given partial 
differential equation (PDE) has been proved to be both conceptually rewarding and 
technically successful. In spite of its obvious usefulness, a problem remains unsolved: 
the relationship (if any) among the different methods used to obtain such SR. This 
paper is an attempt to clarify this important point in a constructive manner. 

There exist two main approaches to the problem of finding similarity reductions of 
a given partial differential equation: 

The Lie approach. Each of the Lie symmetries of a given PDE gives rise to a SR. AU 
that remains is to find the Lie symmetries of the corresponding PDE. In 1974 Bluman 
and Cole [ 11 and later Olver and Rosenau [2] generalized the Lie method to encompass 
symmetry transformations leaving invariant just a subset of the possible solutions of 
the PDE. These new symmetries have become known as ‘conditional symmetries’. We 
shall be referring to this generalization as the non-classical method. 

The direct method. The algorithm developed in 1989 by Clarkson and Kruskal [3,4] 
which allows us to find SR of the PDE without using group theory at all. 

Are these two methods equivalent? For the Boussinesq equation Levi and Winternitz 
[ 5 ]  have shown that both methods lead to the same SR. However Clarkson and Nucci 
[6] and h c c i  [7] have argued that in the Fitzhugh-Nagumo and Burgers equation, 
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respectively, the non-classical method yields more information than the direct method 
since a considerable amount of SR obtained from the former cannot be found using 
the latter. 

More recently the author [SI has proposed a combination of both the direct method 
and the singular manifold method of Weiss [9] which can be deduced from the 
generalization of Painlev6 analysis for PDE [IO]. In this new and consistent framework 
the present author has been able to prove that one can obtain all the SR already found 
through the non-classical method for the Fitzhugh-Nagumo equation. Although the 
specific features of this above mentioned combination will be discussed below we would 
like to propose at this stage that a consistent use of the direct method should include 
in the future a systematic use of Painlev6 analysis in the way to be described shortly. 

This paper deals with both a detailed description of the direct method combined 
with the singular manifold method and an application to this approach to the Burgers 
and Burgers-Huxley equations. We shall be able to prove that the same results as those 
found through the non-classical method [6 ,7 ,11 ]  can be obtained with the use of our 
formalism, thus adding more credibility to the conjecture that both approaches yield 
the same type of information on the SR of a given PDE. The plan of the paper is as 
follows: in section 2 we analyse the case of the Burgers equation from the point of view 
of the direct, non-classical and singular manifold method and we show the equivalences 
and differences we encounter in foilowing these three different roads. Section 3 is entirely 
devoted to the Burgers-Huxley equation (a case in which only the conditional Painlev6 
property holds) a similar analysis is performed. Section 4 contains conclusions and 
prospects for future work. 

2. The Burgers equation 

We shall start with a case which looks simple but contains some subtleties. We will be 
analysing first the approach and then the non-classical method which has been proven 
to yield different information [7 ] .  This apparent mismatch can easily be reconciled by 
using the singular manifold point of view which gives all information contained in the 
non-classical method. 

2.1. The direct method for the Burgers equation 

We begin by considering the Burgers equation written in the form 

U, + U,, + uu,= 0. (2.1) 
The direct method of Clarkson and Kruskal[3] aims to find all solutions of (2.1) which 
can be written as 

u(x, t )  = a(x, t )  + z,o[z(x, t ) ]  (2.2) 
where z=z(x, t )  is the reduced variable in such a manner that the PDE (2.1) becomes 
an ODE  for^ m(z). 

Substitution of (2.2) into (2.1) leads to 
o,+ WO,+ ( 1/&(3zXr+ z,+ az,)wZ+ (Z=/&)W 2 

+ ( l/z:)(zxu +z,,+ zxax + zX,a)o + (1 /&(at + a,+ aa,) = 0. (2.3) 
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The usual way to proceed in the direct method includes the requirement for (2.3) to 
be just a second-order ODE for o ( z )  such that all the coefficients in (2.3) are functions 
of z only. One can easily see [3] that this condition yields the following form for z(x, t )  
and a(n, t )  

z(x, t )  = e(t)x+ u ( t )  

a(x ,  o = - ( e , / e ) x - ( ~ , / o )  

where O ( t )  and a(t) take the form: 

e(t) =(at2+26t+e)-’” 

(ae - b2)o(t)  = -f+ 0[(6c- da)t + (ce - bd)] 

( 2 . 5 ~ )  

(2.5b) 

and a, b ,  c, d, e and fa re  arbitrary constants. With these forms for O ( t )  and o(t) the 
equation (2.3) becomes the following second-order ODE: 

w,+ WW,+ (ae- bZ)z+ f=O. (2.6) 
In order to find the symmetries associated to the SR (2.4) one has to obtain the 

corresponding vector field components. It is well known that these components have 
to verify the invariant surface condition 

((x, t ,u)u,+z(x, t ,  u)u,-q(x, t,U)‘O. (2.7) 

( (a,+z,w +z:wz) + z(a,+zx,o +z,z,o;) = q.  

With the help of (2.2) we can write (2.7) in a different form as 

(2.8) 
Since we need to eliminate all the W; dependence from (2.8) one needs to impose the 
conditions 

T f O  (2.9a) 

5 / 7 =  -zr/zx (2.96) 

and finally using (2.4) and (2.5) we find for the vector field components the expressions 

r#O (2.10a) 

(/z = [(at +6)x+ ct +d)] / [at2+26t  +e]  (2.106) 

q / z  = [-(at  + b)u +ax+ c]/[at2+26t + e ] .  (2.10c) 

A simple comparison with [ 3 ]  and 171 shows that these correspond to classical Lie 
symmetries. It is worth noting from (2.96) that this procedure is only suitable for 
identifying symmetries for which ( ( / r )  are independent of U .  This fact has already been 
noted by other authors [6,7]. 

2.2. The direct method and the singular manifold 

One would be tempted to assume that (2.4) represents the only possible reduction of 
the general form (2.2). The aim of the present section is to show that this is not the 
case. In fact (2.2) includes as a particular case the singular manifold method as we 
shall discuss below. In order to proceed let us first briefly resum6 the main features of 
the application of the singular manifold method to the Burgers equation. More details 
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can be found in [9] and [IO]. As is well known, the Burgers equation possesses the 
Painlev6 property [9], or equivalently their solutions can be written in the form: 

(2.1 1) 

where U&, f) and #(x,  t )  are analytic functions and also #(x, t ) = O  is an arbitrary 
manifold called the ‘movable singnlarities manifold’. We will assume henceforth that 
this manifold is non-characteristic (& #O). 

To apply the singular manifold method we postulate truncation of the series (2.11) 
as 

u=u1+2(4,/4) (2.12) 

UI,+Ul ,  + u*u,,=o (2.13a) 

where ul(x, t )  is a solution of (2.1) 

and now $(x, t )  is not an arbitrary function but the ‘singular manifold’ that satisfies 
the linear equation 

(2.1 3b) 

As is well known [lo, 121 the Painlevk property is invariant under homographic 
transformations. To exhibit this invariance in a more explicit manner it is useful to 
define the following quantities: 

U = 4 J 4 Z  (2.14~) 

s=vx- (v2/2) (2.146) 

w = M 4 x .  (2.14~) 

Notice that both w and s (the Schwartziau derivative) are homographic invariants. 
These definitions allow us to write (2.13b) in the form: 

U , = - U - w  (2.15) 

4, + 4&+ UI 4 x = o .  

and substituting this in (2.13~) we are led to 

wt= [-Zw,- U,+ (02/2) + (w2/2)].. (2.16~) 

where we have used the equation 

U, = (wx+ wu), (2.16b) 

that can easily be obtained from (2.14). It is quite trivial to check that the compatibility 
condition between (2.16~2) and (2.166) leads to the following relation between the homo- 
graphic invariants: 

s=ux-(v2/2)= -wx-f(w+A)2 (2.17) 

and also that w must satisfy 

w,+ w,- wx(2w+A) ‘0 (2.18) 

where 2 is an arbitrary constant. 
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After this brief review we address ourselves to the main goal of this section by 

z(x, 0 = 4 (x, 0 (2.190) 

a@, = a ( x ,  0 (2.19b) 

noting that (2.2) contains (2.12) as a particular case. Actually, if we identify in (2.2) 

where 4 and U, satisfy (2.13) the equation (2.3) becomes 

(2w4+ w')9+2(4xx/4.3(20,+ m') =o. (2.20) 

26J4+w2=0 (2.21) 

w = 2 / + .  (2.22) 

Thus (3.9) reduces ( 3 . 3 )  to the first-order ODE: 

with obvious solution 

It is now trivial to see that one can write (2.2) exactly in the form (2.12) as promised. 

2.3. Non-classical symmetries and the singular manifold 

The next step is now to find and identify the symmetries corresponding to use of the 
singular manifold as a reduced variable. We first observe (appendix 1) that the solution 
of the form (2.12) verifies 

-fcU- a)(u + a+ zW) ( 2 . 2 3 ~ )  

(U- (w/2)(u+ a + 2 ~ ) 1 .  (2.23b) 

Then the surface invariant condition (2.7) is now 

rl=(u-a)[rw,-f(u+a+zw)(r~+~)]. (2.24) 

One should keep in mind that still w must satisfy the equation (2.18). We shall be 
distinguishing henceforth two different cases of (2.24) depending on whether r is zero 
or non-zero. 

(a) r=O 

are 
In this case we set t = 1 without loss of generality. The vector field components 

5=0 ( 2 . 2 5 ~ )  

< = 1  (2.253) 

rl= - ; ( u - ~ ) ( u + ~ + z w )  (2 .25~)  

and from (2 .25~)  we obtain 

w = - [ ( ~ + a ) / 2 ~ -  tl(u-a)-l. (2.26) 

Taking into m u n t  the fact that w must satisfy (2.18) it is not hard to check that 

%+ tlxx+2rlllVx+urlx+ '12(1 + V U " )  = 0. (2.27) 

Now (2.25a), (2.25b) and (2.27) exactly correspond to the first of the two non-classical 
symmetries of Burgers equation found by hcci  [7] and Ames [ll].  

simple substitution of (2.26) into (2.18) leads to the following equation for q :  
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(b) z f O  

takes the form: 
Alternatively we now set z = 1 without loss of generality. The equation now (2.24) 

9 -ku + a+ zw)(w + E)] (2.28) 

from which one can obtain w, as 

wx= q(u-a)-l +t(u+a+2w)(w+ e ) .  (2.29) 

Using (2.18) as in the previous case we find under some tedious but straightforward 
calculation (see appendix 2): 

(u-a)-I[q,+ tl,+utlx+2~gx1 

+$(U + a + 2 ~ ) [  et+ e-+ (25-~)5,-295. - 2 ~  71 

- k c U +  a +  2w)[9..-25,+ 2(u- 5 ) 5 ~  
+KcU + a + 2w)5wu = 0. (2.30) 

In order for (2.30) to be satisfied independently of w, the vector field components 5 
and q must satisfy 

5..=0 (2.31a) 

qw- 25"X + - 5 )5.= 0 (2.31b) 

(2.31~) 

(2.31d) 

These equations (2.31) exactly correspond to the second non-classical symmetry found 
in [7] and [l 11 through the Bluman and Cole group theoretical procedure [l,  21. 

One could even proceed further as to find the specific form of 5 and U. To achieve 
this goal we note that (2.31a) implies 

5 ( x ,  t ,U)=P(X,  Ou+S(x,O (2.32) 

which, combined with (2.31b) and (2.28), leads to p= -2 so that 

t = l  (2.33a) 

{ = - C + S ( x ,  t )  (2.33b) 

9 = (U - A){ w, +$(U+ l+2w)[-(u/2) + w + 6 )I} . (2.33~) 

Next we force the above equations to fulfill (2.31~) and (2.31d). Therefore we finally 
obtain for 6: 

s = - ( ~ / ~ ) - w + ( w J w )  (2.34a) 

together with the equation (2.18) for w that reads 

wt + w,, - wx(2w+ a) = 0. (2.346) 

Therefore we have shown that any solution of the form (2.12) possesses a non-classical 
symmetry whose vector field components can be calculated through (2.33) where w and 
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6 satisfy (2.34a, b). Besides this, system (2.34) gives a systematic procedure for generat- 
ing solutions of Burgers equation. For each solution of (2.34) one can solve the Ricatti 
equation (2.17) for U. With the help of (2.14) and (2.15) one can also find b ( x ,  t )  and 
u,(x, t) .  Inserting 6 and ut in (2.12) one obtains a solution of (2.1). In appendix 3 it 
is shown that the solutions (iiio), (iiib) and (iii<) of [7] are just particular cases of (2.34) 
obtained for 6=constant. 

3. The Burgers-Huxley equation 

We now want to show that the singular manifold method is strong enough to hold even 
in the absence of the Painlev6 property. The celebrated Fitzhugh-Nagumo equation [6] 
constitutes such an example and the author [8] has already used the singular manifold 
analysis to analyse the fact that the direct method was unable to reproduce the results 
provided by the non-classical method. The Fitzhugh-Nagumo equation does not possess 
the Painlev6 property but it has the conditional Painlev6 property instead, which refers 
to the fact that the Painlev6 property is enjoyed just by a subset of the solutions of 
the PDE under study. Besides, we shall generalize the results of [SI by looking at the 
generalization of the Fitzhugh-Nagumo equation called the Burgers-Hnxley equation 
from which the former is a particular case of the latter. The Burgers-Huxley equation 
is 

u,-uxy+ auu, +Pu(u- I)(u - y )  = 0. (3.1) 
The Fitzhugh-Nagumo equation corresponds to the choice of parameters a = O ;  p =  1. 

3.1. The singular manifold method 

Let us apply to (3.1) the singular manifold method. This has been applied by the author 
and collaborators [I31 to obtain particular solutions of this equation. Here we are 
interested in another aspect of the analysis. In agreement with [I31 one can obtain the 
truncated solutions as 

u = U l - w m  (3.2) 
where d is a parameter satisfying 

paz + aa-2=0 (3.3) 
and ut must be expressed in terms of the quantities (2.14) as 

ut =i [u-qw +a( 1 - q)] .~ (3.4) 

4=(3-aL)-' (3.5~) 

a= (1 + y) /d .  (3.5b) 

The equation under study has been shown not to possess the Painlev6 property [13]. 
However, we can always use (3.2) to generate solutions. In particular one can always 
start with the trivial solution uI = O  as is done, for instance, in [13]. Thus if we set uI = 
0 in (3.4) one can express U in terms of w in the form: 

The constants a and q are defined as 

u=qw+a(q- 1)  (3.6) 
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and since (U, =0) from (3.2) 

u = - w m  (3.7) 
the solution U must obviously verify (3.1). Imposing this condition and using (3.6) one 
obtains a pair of equations on w that define the singular manifold, namely: 

qw,+(qw+c1 )(qw+c2)=0 (3.8~) 

qwt=-aw,. (3.8b) 

The constants cI and c2 are defined as 

(3.9~) 

(3.9b) 

3.2. Non-classical symmetries and the singular manifold 

In order to obtain U, and ut we take the derivatives of (3.7) and then use (3.7) itself to 
eliminate (&I/$). The procedure is exactly the same as used in appendix 1 for the 
Burgers equation and the result is 

(3.10~) 

(3.10b) 

Now we tum our attention to the relationship with the nonclassical method. The 

5(X,1,U)t l ,+r(X,t , t l )Ur=fl(X,  t,U) (3.11) 

with U, and U, given by (3. lo), is such that w must satisfy (3.8). Let us consider as usual 
the cases r = 0 and r #0, separately. 

(a) r=O 

now reads 

surface invariant condition (2.8) 

We set 5 = 1 without loss of generality such that the surface invariance condition 

~=ux=u[qw+a(q-~)+(u /a) l  (3.12) 

where w satisfies (3.8). To see that (3.12) corresponds to a non-classical symmetry can 
be seen (appendix 4) by taking w from (3.12) and inserting its form in (3.8). The 
resulting equations for q are 

(3.13~) vx+ qqu- rlt(3u/n)-n1+(l/a2)u(u- w- Y ) = O  

%+ {v[(3u/L) - a -  4 - ( P  + a-2)u(u- w- Y)H%- ( s / u )  - (./a)) 
-aI(vZ/u)-(v/n)(2u-~a) +L%(U- I)(u- 7 ) )  =O. (3.13b) 

These equations (3.13a, b) satisfy the equation (appendix 4) which one usually obtains 
through the non-classical method for the r = O  case. This equation is 

(3.14) 
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Therefore the truncated solutions obtained in [ 131 have a non-classical symmetry given 
by (3.12). We also obtain through the SMM the solution of the rather complicated 
PDE (3.14). 

(b) r#O 

ship between q and 5 :  
Nowweset c =  1. Substituting(3.10)into (3.11) oneobtainsthefollowingrelation- 

I) = U W ( U / ~ )  - PI - (cIc2/q)) + eu[qw+aiq- 1) + w)i. (3.15) 

As in the procedure developed for the Burgers equation satisfy the symmetry equations 
can be obtained by taking w from (3.10~) and forcing this form of w to satisfy (3.8). 
The result (appendix 4) yields two different types of symmetry. 

(b.1) 

5 =a- ( u / W  (3.16~) 

q =  -(a2q)-tu(u- I ) ( ~ -  y )  (3.166) 

which do not require any additional condition for w. Thus, all solutions obtained in 
[13] possess this symmetry without further restriction. 

6 2 )  

c = - w  (3.17~) 

q=O. (3.176) 

In this case w must verify 

(qw+ct)(qw+c2) =o. (3.17~) 

If one wishes to check that b.l,2 are non-classical symmetries it would be enough to 
write the symmetry equations obtained through the non-classical method by Bluman 
and Cole (r#O) which are 

("U = 0 (3.18~) 

7""- 25, - Z t u ( ~ u -  5 )  =o (3.186) 

q, -  qxx+2[q + M u -  I ) @ -  r)15x+ auqx 

+Pq[32-2(y+ l )u+y]-~u(u-  l)(u- y)qu=O (3.18~) 

5,-  tu- [au-2c15,-5.[2q +3Pu(u- I)(u-g)l -aq+2qm=O (3.18d) 

and to find the solution, which in this case is quite simple. This solution leads directly 
to the symmetries given in (3.16) and (3.17). Note that the symmetries b.1 for the 
Fitzhugh-Nagumo equation are the aims of the discussion contained in [6] since, as 
we shall see in a moment, this cannot be obtained through the direct method. 

3.3. The direct method and the singular manifold 

In fact, in order to establish the connection between the singular manifold method and 
the direct method the singular manifold @ is supposed to be the reduced variable z(x, r), 
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(3.19) 

The solution (3.7) can be expressed now as: 

For the direct method the solution of (3.1) is supposed to be 

u=zxw(dJ) 

where w ( 6 )  must satisfy the equation 

w;, + a w w: + w3 + (6J2/z:)[-pZx( 1 + y )  + az,,] 

+ (w&)[z,- 3zXx1 + WIZx,- z,,,+ rPzxl= 0. 

The direct method requires (3.20) as a second-order ODE. The only possibility for 
this is 

z,/zx= -G/q (3.21) 

where q and ci are defined in (3.5) and (3.9). This means that the only possible reduction 
that can be identified using the direct method corresponds to the travelling wave reduo 
tion. That is to say 

z = Ix- ( 4 7 )  +&I (3.22) 

and the associated symmetry is obviously (b.2). 
On the other hand the connection between the direct method and the singular 

manifold method can be established if we identify z in (3.20) as the singular manifold 
6. In this case, and taking into account the equations (3.6) and (3.8), the equation 
(3.20) reduces to the first-order ODE: 

no@) - W 2 = o  (3.23) 

whose obvious solution is 

w =-A/# (3.24) 

which, combined with (3.19), is exactly the truncation ansatz (3.7) for the singular 
manifold method. 

4. Conclusions 

In this paper we have dealt with the problem of the symmetries of the Burgers and the 
Burgers-Huxley equations. The similarity reductions giving rise to these symmetries 
can indeed be found using group theoretical methods and can be classified in two 
different categories: classical (conventional Lie theory) and non-classical (Bluman and 
Cole, and Olver and Rosenau). 

Can one reproduce these two classes of symmetries through direct methods? Some 
authors have been rather reluctant to believe that the direct methods were in any way 
suitable for describing both different classes of symmetries. What we have shown in 
this paper is that the singular manifold method is indeed able to reproduce the results 
already obtained using group theory. In this paper we have shown this for two equa- 
tions, but several other examples already worked out [8] confirm our expectations, 
which can be summarized in the following way: the direct method of Clarkson and 
Kruskal should be extended to include the results from the singular manifold analysis. 



Non-classical symmetries and the singular manifold 2123 

This new improued direct method or singular mangold method is equivalent to the non- 
classical method in all examples we know of. A proof of the total equivalence is still 
lacking but work in this direction is now in progress. 

An interesting remark allows one to classify the symmetries of the two different 
classes from our new point of view: with the direct method of Clarkson and Kruskal 
one is able to obtain SR transforming (2.1) in a second-order ODE. If we now use the 
singular manifold method the SR which reduce (2.1) to a first-order ODE are obtained. 
Actually the singular manifold plays the role of the reduced variable itself. We can also 
use a procedure to obtain the vector field components associated to the use of the 
singular manifold as a reduced variable. The interesting fact is that these symmetries 
are exactly the ones obtained through the Bluman and Cole non-classical method. 

It is also interesting to emphasize that the Painlev6 property is by no means a 
necessary condition for successfully applying the singular manifold procedure. In fact 
the conditional Painlev6 property seems the only necessary requirement for applying 
this method successfully. 

If our conjecture is true, a crucial question remains still unanswered. This question 
concerns the internal relationships between symmetries and the singular manifold 
method, which lies at the heart of a complete understanding of the Painlev6 analysis. 
We leave these as another related question for future work, to be reported elsewhere. 
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Appendix 1 

In this appendiw we aim to find U, and U, when U is defined by (2.12). We take the 
derivative of (2.12) with respect to x 

~x=ulx+2u($x/$) -2($x/$)2 

U,=ul,+ u(u- UI) -ku -  UI) . 

ux=-ux-w,+~(u -w )-wu-3u 

where vis defined in (2.14~). Eliminating $J$ between (2.12) and (Al.l) 
2 

Now we use (2.15): 
1 2  2 1 2  

and with the aid of (2.17) finally we have 

=-L 2(u - + a+ zW). 
This is just the expression used in (2.23a). 

In the same way differentiating (2.12) with respect to t 

u,=u1t+ 2(wx+ wv)($x/$) - 2 w ( $ . m 2  

(Al.]) 

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 
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and again we can use (2.12) in order to eliminate dX/#: 
(A1.6) 1 2  ut= UI, -u,(w,+ wv) - f w d +  u(w,+ wv+ u,w) - p u  . 

Using (2.17) we obtain 

U,= v,- W , +  w,(w+ U) +%(I+ w2) + u(w*- w', -$VI? (A1.7) 

and with the aid of (2.16a), (2.16b) and (2.17) 

u,=(U-a)[w,- (w/2)(U+a+2w)l. (A1.8) 

This is the expression used in (2.236). 

Appendix 2 

Our purpose in this appendix is to obtain from (2.29) the equations (2.31) for the 
vector field components 11 and 5 using also the fact that w must satisfy (2.18). We 
differentiate (2.29) with respect to f and (2.18) with respect to x,  obtaining 

(A2.1) 

(A2.2) 

This is the equation (2.30) which we were interested in. 
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Appendix 3 

The simplest case of (2.34) corresponds to F =constant. In this case the equations (2.34) 
are 

w,- W * = ; ( ~ F + A ) W  (A3.1) 

wt -;(a- 26 )wx =o. (A3.2) 

On the other hand, choosing uI =A in (2.19, we have 

-(w+n). (A3.3) 

This is obviously a solution of the Ricatti equation (2.17). 
It is easy to verify that the solution of (A3.1) and (A3.2) is 

w = -U - A= -k{ I + tanh[k(x + ct +xo)]} (A3.4) 

with k=a(A+2F) and c=A-2k or 

w =  -U= -2C(2Cx+ B)-' if F=a=o (A3.5) 

where xo, B and Care integration constants. 
We can now use the equations (2.14) in order to obtain $(x, t ) .  The result is: 

(a) $ = A  + Bx + C(x2- 2t) 

U = 2(B+ 2CX)(A +Bx + cxz - 2 c p  

(for A= 6 =0) 

and the solution (2.12) is in this case 

(A3.6) 
i.e. the solution (iiiJ of 171. 

(b) $ =A+ B exp[-(A/2)x+ (A2/4)t] + Cexp(-hr) (for 6=0, A#O). 

Using this expression for 4 in (2.12) we have the following expression for U: 

u=a[A - Cexp( -h)]{~ + B exp[ - (A/~)x+  (n2/4)t1 + cexp( -&)}-I. 

This solution corresponds to ( i t b )  in [7]. 

(c) $=A + B exp(Fx- F 2 t )  + Cx (for F#O,A=O). 

Now the solution (2.12) is 

(A3.7) 

U =  2[6B exp(6x- 6't) + c ] [ A  + B exp(6x- F 2 t )  + CX]-' (A3.8) 

and this is the solution (iii.) of [7]. 

Appendix 4 

In order to determine the equations for the non-classical symmetries of the Burgers- 
Huxley equation we must distinguish between the T = 0 and t # O  cases. 

(a) z=O 
We need to use (3.12) in the form: 

q w = ( m - ( w - a ( q -  1). (A4.1) 
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Inserting this in (3 .8~) :  

Using partial derivatives and 

U,= q(u, x, 0 (A4.3) 

the resulting equation is 

q,+ qqu- 7[(3u/a) + a-%(u- i)(U- 7). (A4.4) 

On the other hand the~substitution of (A3.1) and (A3.2) in (3.86) yields 

~ , q -  ~ ( U J U )  - - u u - ' [ ~ - u ( u -  i ) / a ] [ q - ~ ( ~ -  ~ ) / n ]  =o. (A4.5) 

Now we can combine the derivative of (A4.2) with (A4.5) in order to obtain the non- 
classical symmetry equation (3.14). This is to say 

(A4.6) 

where we have used (3.1) in the form 

u,=D,q- c ~ u ~ - ~ u ( u -  I)(u- y). (A4.7) 

(A4.8) 

so that 

qwx= ( ~ / u )  + auz+ ~ ( u -  i)(U- Y) - ( U . m  - ( U . J ~ / U ) ~  (A4.9) 

where, as always 

A = rj - &+=ut. (A4.10) 

Using (A4.8,9) in (3 .8~)  the result is 

u x [ - c + ~ -  (U/@)]+ [q +(aZq)-'u(u- i)(u- Y)] =o. (A4.11) 

There are two possible solutions of (A4.11) depending on whether w is or is not a 
constant solution of (3.8). 

(b.1) If w is an arbitrary solution of (3.8), (A4.11) is satisfied only if 

5 =a - w q a )  (A4.124 

(A4.126) 

(b.2) On the other hand if w is a constant solution of (3 .8~)  (namely qw=-c; (i= 
1,2)) there is another possibility because in this case (A4.8) means 

ux=t+- 8,ya for 8, = 1, 8 2 =  y (A4.13) 
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so that, using (A4.13) in (A4.11), the solution is 
e = cJq=  -w (A4.14~) 

q=O. (A4.14b) 
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